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Abstract

The software architecture of a distributed program can be represented by a hierarchical
composition of subsystems, with interacting processes at the leaves of the hierarchy.
Compositional reachability analysis (CRA) is a promising state reduction technique which can be
automated and used to derive in stages the overall behaviour of a distributed program based on
its architecture. Conventional CRA however has a limitation. The properties available for
analysis after composition and reduction are constrained by the set of actions that remain
globally observable. The liveness properties which involve internal actions of subsystems may
therefore not be analysed. In this paper, we extend compositional reachability analysis to check
liveness properties which may involve actions that are not globally observable. In particular, our
approach permits the hiding of actions independently of the liveness properties that are to be
verified in the final graph. In addition, it supports the simultaneous checking of multiple
properties (both liveness and safety), and identifies those properties that are violated. The
effectiveness of the extended technique is illustrated using a case study of a Reliable Multicast
Transport Protocol (RMTP) with over 96,000 states and 660,000 transitions.
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1 Introduction

Distributed processing is widely used to provide computing support for diverse
applications. Many of these applications are complex and critical; an error can have
catastrophic consequences. Behaviour analysis is a useful technique that can help
discover defects and check if a program performs as intended.

Static analysis techniques for concurrent and distributed programs can be used to
verify two classes of property: safety and liveness [4]. A safety property asserts that the
program never enters an undesirable state. For example, mutual exclusion is a safety
property which specifies the absence of a program state where a common resource is



simultaneously accessed by more than one client. A liveness property asserts that a
program eventually enters a desirable state. For example, the assertion that a program
will eventually close a file after opening it is a liveness property.

In this paper, we focus our discussion on liveness properties which can be specified
in terms of Büchi automata - finite state machines that accept infinite words [3, 14].
These machines will be referred to as property automata. Each property automaton
specifies the set of acceptable execution sequences in terms of actions that correspond
to a liveness property of interest. For example, the property automaton in Figure 1
asserts the liveness property that a write request will eventually be granted. This is
because the automaton accepts an infinite word w if and only if the execution of the
automaton on w contains the acceptance state 0 an infinite number of times. Therefore,
this automaton accepts the language (write_request* request_grant)ω, where
juxtaposition represents concatenation, and the operators * and ω denote finite and
infinite repetition accordingly.

write_request

request_grant

Property write_request0 1

Fig. 1. A property automaton

However, distributed programs are generally complex to analyse. Even for small
programs, analysis of their behaviour is tedious without the support of an effective
automated technique. One approach is to perform analysis in a compositional manner,
thus exploiting the design structure (software architecture) of the distributed program
[12]. This can be represented by a hierarchical composition of subsystems, with
interacting (primitive) processes at the leaves of the hierarchy. Behaviour of a primitive
process can be modelled as a state machine whose transitions are labelled by the
activities it can perform. Composite processes appear at the nodes of the hierarchy.
Each composite process is a subsystem formed by a collection of processes that can be
either primitive or composite. The behaviour of a composite process is derived by
composing the behaviours of its immediate children in the hierarchy. Details of the
subsystem that are internal to it are then hidden. A minimal state-machine is generated
for its abstracted behaviour, corresponding to the behaviour of the subsystem visible to
its environment. The global system behaviour is obtained in this way, and can be used
for verification.

Promising results have been reported from the use of Compositional Reachability
Analysis (CRA) to generate a state space graph for a well-structured distributed program
[19, 22, 23, 26]. Yeh [25] described several case studies which suggested similar
performance between a technique of compositional reachability analysis and that of
constraint expressions [5]. Sabnani et al. [22] described an experiment applying
compositional reachability analysis to the Q.931 protocol. They found that the
intermediate state space graphs generated never exceeded 1,000 states although the
global state space graph given by traditional reachability analysis of the protocol
contained over 60,000 states. Similar observations have also been made by Tai and
Koppol [23]. CRA is particularly suitable for analysing properties of programs which



are likely to evolve. It helps localise the effect of change. When changes are applied to
a program, only the properties involving those subsystems that are affected by the
changes need be re-computed.

The CRA technique however has a limitation. The properties available for analysis
after minimisation are constrained by the set of actions that remain globally observable.
This poses a severe problem if properties to be checked involve a large set of actions
that are not globally observable. Previous work [7] has proposed a mechanism to
address this problem during the checking of safety properties. In this paper, we extend
the CRA technique with a mechanism for the checking of liveness properties. The
extension allows multiple liveness properties to be validated simultaneously. Liveness
properties are violated when some subsystems, within the context of a distributed
program, can perform execution sequences not acceptable to the specified property
(Büchi) automata. If no violation of liveness properties is detected, the analysis
constructs a global LTS observationally equivalent [20] to that constructed using
conventional CRA techniques; otherwise it indicates which and how liveness properties
are violated.

As mentioned, we have adopted the approach which expresses properties as Büchi
automata. Büchi automata can be used to express formulae of linear time temporal logic
[14]. Fernandez et al. propose a technique to compose the property automata with the
system [10]. Godefroid and Holzmann [13] compute the product automaton of the
specifications of the system with a Büchi automaton for the negation of a formula of
interest. Verification then reduces to checking if the product automaton accepts only the
empty set. A similar approach has been proposed by Aggarwal et al. [1]. Their work
extends the selection/resolution (S/R) model with acceptance states, adding to it the
expressiveness of Büchi automata. However, the issues of compositionality and hiding
of internal actions are not addressed in any of the above works.

Recently Bultan et al. have proposed a method for performing compositional
analysis of temporal properties expressed in the branching time logic ∀ CTL [6]. The
method generates counterexamples using a compositional approach. Branches of the
intermediate graphs are pruned if they do not provide potential counterexamples for the
property under verification. All actions are assumed to be globally observable in the
method. The issues of hiding internal actions and incorporating the checking
mechanism into the framework of compositional reachability analysis have not been
addressed. Moreover, their method can handle a single property at a time. Every change
introduced into the system when a violation is detected requires rechecking of all the
system properties one by one.

The rest of this paper is structured as follows. Sections 2 and 3 introduce labelled
transition systems and present a reliable multicast transport protocol (RMTP) which is
used as a case study in our discussion. Section 4 describes compositional reachability
analysis and its limitations. Section 5 proposes a technique to overcome these
limitations. The technique detects and locates violation of liveness properties related to
subsystems. This is followed by a comparison of experimental results and conclusions
in Sections 6 and 7, respectively.



2 Labelled Transition Systems

A labelled transition system (LTS) can be used to model the behaviour of a
synchronous communicating process in a distributed program. An LTS contains all the
states the process may reach and all the transitions it may perform. The model has been
widely used in the literature for specifying and analysing distributed programs [9, 11,
16, 21, 24]. In the model, communicating processes are synchronised through actions
sharing the same labels. For example, let a represent the action in which a machine in a
flexible manufacturing system transfers a part to a conveyor belt. The action a occurs
only if the machine is ready to hand over the part, and the conveyor belt is
simultaneously prepared to receive the part. In terms of LTS, a is modelled as a
possible action in the standalone behaviour of both processes. Its execution then
requires simultaneous participation from both processes.  Formally, an LTS of a process
P is a quadruple < S, A, ∆, p > where

(i) S is a set of states;
(ii) A = αP ∪ {τ}, where αP is the communicating alphabet of P which does not

contain the internal action τ;
(iii) ∆ ⊆  S × A × S, denotes a transition relation that maps from a state and an action

onto another state;
(iv) p is a state in S which indicates the initial state of P.

An LTS of P = < S, A, ∆, p > transits into another LTS of P’ = < S, A, ∆, p’ > with an
action a ∈  A if and only if (p, a, p’) ∈  ∆. That is,

< S, A, ∆, p > →
a

  < S, A, ∆, p’ > iff (p, a, p’) ∈  ∆.

Since there is a one-to-one mapping between a process P and its LTS, we use the terms
process and LTS interchangeably. Processes in a distributed program may be composed
by operator ||, which has similar semantics to those of the composition operator used in
CSP [15]. P1 || P2 is the parallel composition of processes P1 and P2 with
synchronisation of the actions common to both of their alphabets and interleaving of the
others. Observability of actions in a process can be controlled by a restriction operator
↑. P↑L represents the process projected from P in which actions in A-L are replaced by
the internal action τ.

Finally, a liveness property is expressed as a Büchi automaton B = < S, A, ∆, q0,
F >, where S is a finite set of states, A is a set of observable actions, ∆ is a set of
transitions, q0 is its initial state, and F is a set of acceptance states. An execution of B on
an infinite word w = a1a2a3…over A is an infinite sequence σ = q0q1q2... of elements of
S, where (qi-1 ai qi) ∈  ∆ for every i > 0. An execution of B is accepting if it contains
some acceptance state of B an infinite number of times. A word w is accepted by B if
there exists an accepting execution of B on w.

3 The Reliable Multicast Transport Protocol (RMTP)
To illustrate our approach, we present a Reliable Multicast Transport Protocol (RMTP)
as proposed by Lin and Paul [18]. The protocol is designed for applications that cannot



tolerate data loss. It provides sequenced, lossless delivery of data from a sender to a
group of receivers, at the expense of delay. Reliability is achieved by a periodic
transmission of acknowledgement by the receivers (ACK packets) and a selective
retransmission mechanism by the sender. Scalability is provided by grouping receivers
into a hierarchy of local regions, with a Designated Receiver (DR) in each of those
regions. Receivers in each local region send their ACKs to the corresponding DR, DRs
send their ACKs to the higher level DRs or to the sender (see Figure 2), thereby
avoiding the ACK-implosion problem. In addition, DRs cache received data and
respond to receivers in their local regions, thus decreasing end-to-end latency. The term
Acknowledgement Processor (AP) is used to denote either a DR or the sender, when
referring to them as entities that receive and process ACKs. Receivers which are not
designated receivers are referred to as ordinary receivers.

REC_1

   Ack

   Router

  Receiver

  Sender

 Des.Rec

 DR_B

DR_A

REC_2 REC_3 REC_4

Fig. 2. A multicast tree of receivers

To cater for situations where DRs may fail, receivers use a mechanism to
dynamically select the nearest operational AP in the multicast tree. This is the part of
the RMTP protocol that our case study focuses on. Dynamic selection of APs is
achieved in RMTP by the use of a special packet, called the SND_ACK_TOME (SAT)
packet. The sender and all DRs periodically advertise themselves (action adv) by
multicasting SAT packets along their subtrees. The SAT packets are tagged with the
same initial time-to-live (TTL) values. Routers decrement the TTL value when
forwarding packets. Therefore a larger TTL value indicates a closer proximity in the
multicast tree. On receiving an SAT packet, a receiver compares the TTL value
associated with the incoming packet with that associated with the AP currently selected.
The receiver switches to a new AP if the incoming packet has a larger TTL value.
When a receiver fails to receive a new SAT packet from the currently selected AP after
a certain period of time, it assumes failure of the AP and initiates another selection
cycle.

In our case study, we have modelled this part of the protocol for the configuration
depicted in Figure 2. Three processes are associated with both ordinary and designated
receivers in the multicast tree, namely the Receiver, Channel, and Watch processes.

Let us consider the ordinary receiver REC_1 in Figure 2 as an example. Figure 3
presents the configuration diagram of REC_1 that encapsulates three processes (shown



in the Darwin architectural description language [17]). Communicating actions take
place where portals of components (represented as grey dots) are bound together. A
portal is an interface instance and has a type that is simply a set of names that refer to
actions or events shared between bound components. Interface types in the diagram are
defined as follows:

interface dr_info {ms_fail; selA; selB; selS;}

interface dr_mes {mesA; mesB; mesS;}

interface fails {failA; failB;}

interface advs {advA; advB; advS;}

Ch a n n e l

Wa t c h

Re c e iv e r

 dr_mes

 dr_info

advs

fails

REC_1

Fig. 3. The configuration diagram of subsystem REC_1

As illustrated in the configuration diagram, REC_1 interacts with other entities in
the multicast tree through interfaces advs and fails, consisting of actions advA, advB,
advS, failA, and failB. For convenience, we use actX/Y/Z to stand for the set of actions
actX, actY and actZ which share the same prefix act in their labels. The behaviour of
REC_1 is given by the composite behaviour of its three constituent processes described
in terms of LTS as in Figure 4.

The Channel process models a lossy channel, which receives advertisements from
the APs above the receiver (actions advA/B/S), and transmits them to the Receiver
process (actions mesA/B/S), or loses them (action lose). The specification assumes fair
execution in the sense that unfair execution sequences where the Channel keeps losing
all messages are refused. The Watch process models the time-out associated with the
selection of a new AP. It observes all potential APs for the receiver, and when a failure
of the selected AP occurs (actions failA/B), it informs the Receiver (actions ms_fail) so
that the selection procedure is initiated. The receiver then selects as its AP (action
selA/B/S) the AP whose advertisement it receives first. Selections are modified
whenever an advertisement is received from a nearer AP than the one currently
selected. In the composite behaviour of the Receiver, Channel and Watch processes,
only actions failA/B, and advA/B/S synchronise with the environment of REC_1 (via its
interface portals fails and advs), so all the remaining actions can be made
unobservable, i.e.,

REC_1 = (Channel || Watch || Receiver) ↑ {failA/B, advA/B/S}.
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Fig. 4. LTS of the receiver REC_1

failB

mesS/A
advB

recoverB
failB

advB

advB

advB

fatalB

failBfailB
advB
mesS 2

5

1

0

4

3

6

selA

Des_RecB

failBselS

 

ms_failmesS

mesA

mesA

failB

failB

mesS
lose

recoverB

 advA

0

1

2

3

mesA
lose

 advS

advA/S

B_Chnl

selS

selS, failA

failB

recoverB

selA

failAfailB

1

0 2

3

selA

failB

B_Watch

ms_fail

ms_fail

failB

failA

  

Fig. 5. LTS of the designated receiver DR_B

In Figure 5 we illustrate the behaviour of designated receiver DR_B. DR_B has
also been specified in terms of three components. A DR behaves like a receiver, except



that it may fail and that it advertises itself. DR_B may fail at any time (failB), and enter
a state where it stops advertising itself. From this state it may either fatally fail (fatalB)
or recover (recoverB). All actions in DR_B that do not synchronise with its
environment can be made unobservable, i.e.,

DR_B = (B_Chnl || B_Watch || Des_RecB) ↑ { failA/B, advA/B/S}.

Note that we have not modelled failure for ordinary receivers and the sender. If the
sender fails, the multicast session is cancelled, in which case RMTP need not fulfil its
objectives. Properties on the receivers are not expected to hold when they fail.
Moreover, failures of ordinary receivers do not affect the behaviour of their
environment, and may therefore be ignored. Routers have not been specified as separate
processes because our model directly supports multicast by the synchronisation of
actions common in the process alphabets. Finally, in our experiments we have not taken
into account the behaviour of receivers REC_2 and REC_4, since their behaviour for
this part of the protocol is identical to the behaviour of REC_1 and REC_3,
respectively

We have used this case study to verify two liveness properties (Figure 6).
Liv_LocReg1 presents a property that concerns the local region with designated
receiver DR_B.  It states that the dynamic selection mechanism of the protocol must
ensure that whenever DR_B recovers from failure (recoverB) and does not fail again
(failB), it will eventually be the selected AP of all receivers in its local region. In our
case study, the latter corresponds to checking that (selB) will eventually be performed
by REC_1. Since we want to be able to verify this property for the local region, we
need to postpone the hiding of actions selB and recoverB of components REC_1 and
DR_B respectively until the next level in the compositional hierarchy, as seen in Figure
9. Property LivRec3 refers to REC_3, and asserts that whenever DR_A is its selected
AP and DR_A fails (action ms_fail synchronised with its corresponding watch process -
Watch3 in Figure 9 - reflects this fact), REC_3 will eventually select a new AP.

We will now proceed to show how the above liveness properties of the protocol
can be effectively validated using an enhanced compositional reachability analysis
technique.

recoverB

selB, failB

Liv_LocReg1 1

selB, failB

     

ms_fail
ms_fail

selA/S

Liv_Rec3 0 1

selA/S

0

recoverB

Fig. 6. Liveness properties as property automata

4 Compositional Reachability Analysis and its Limitations

Promising results have been reported in the literature on the use of a compositional
approach to derive the overall system behaviour using reachability analysis [22, 23, 26].
In compositional reachability analysis (CRA) techniques, the model of the target system
is given as an LTS that describes an abstraction of the system behaviour, according to



the requirements of the user. Figure 7 gives an LTS describing the abstracted behaviour
of designated receiver DR_A1. Action A.selS in the figure represents selS in designated
receiver DR_A. The LTS indicates that the Sender is the only AP selected by DR_A.
The selection is performed voluntarily by DR_A upon its recovery from failure.

A.selS

failA
fatalA

recoverA
failA

AP_Select 0

1

2

3

Fig. 7. A global LTS of RMTP

The analysis is performed in two steps. Firstly the RMTP protocol is decomposed
into a hierarchy of subsystems that mirrors its multicast tree. Secondly the LTS of the
overall system is composed step by step from those of its subsystems in a bottom-up
manner. In each intermediate step, the LTS of a subsystem is simplified by hiding
internal actions that are not of interest to the global view of the protocol.

The key to the success of CRA techniques is to employ a modular software
architecture and hide as many internal actions as possible in each subsystem. The
observable behaviour of a subsystem where internal actions have been hidden can in
general be represented by a simpler LTS. However, the properties that are available for
reasoning in the analysis are then constrained by the set of remaining globally
observable actions. For instance, consider the case of liveness property Liv_Rec3 in
Figure 6. This property involves actions that are internal to subsystem REC_1. Actions
selA, selS, and ms_fail would therefore need to be exposed in the global graph of the
system for verifying property Liv_Rec3. However, this compromises the CRA
approach. One of the main advantages of CRA is that it offers to the users the
possibility of abstracting from the behaviour of subsystems those details in which they
are not interested. This should obviously not be made at the expense of the
effectiveness of analysis.

In our previous work [7] we describe a technique for making the verification of
safety properties independent from the actions that are observable at the global state
graph of the system. In this paper, we provide a way of achieving the same goal for the
case of liveness properties. Our method achieves this without reducing the advantages
that CRA exhibits as compared to traditional reachability analysis. Our experimental
results presented in Section 6 demonstrate and confirm this.

                                                          
1

This LTS has been constructed automatically by using the TRACTA tool [12].



5 Validation of Liveness Properties

5.1 Specification of Properties

We have incorporated in CRA a mechanism for checking liveness properties. The
method exhibits three main desirable features. Firstly, it finds a way of making the
hiding of actions independent of the liveness properties that are to be checked in the
final graph. Secondly, it checks simultaneously multiple properties, specifically
identifies the violated ones and generates the overall system behaviour. Thirdly, it
avoids keeping specific information on states. Instead states are differentiated in terms
of the actions that can be performed at them.

To achieve the above features, we have introduced a mapping between a given
property automaton and its associated liveness property LTS, as in Definition A.

Definition A: A property automaton P = < S, A, ∆, q, F> is mapped into a liveness

property LTS P’ = < S, A∪ {acc}, ∆’, q> by adding a new globally unique action acc

and new transitions such that:
(i) acc∉α A; and

(ii) ∆’ = ∆ ∪  {s →
acc

 s | s ∈  F}.

Applying the Definition A to the property automata in Figure 6 results in the LTS
depicted in Figure 8.

Liv_Rec3’Liv_LocReg1’

acc1, selB, failB

selB, failB

recoverB
0

ms_fail

selA/S

acc3, selA/S

ms_fail

0 11

recoverB

 Fig. 8. Liveness properties in ECRA

The mapping identifies the acceptance state of Liv_LocReg1 with its ability to
perform the action acc1 in Liv_LocReg1’. Transitions, which identify acceptance states,
are referred to as acceptance transitions. The use of acceptance transitions removes the
need for modelling acceptance states in the LTS model. Storing acceptance states as
special states in the analysis process would have required the introduction of specific
rules for the minimisation procedure. With the use of acceptance transitions, any two
states s and s’ of a subsystem Sys are considered behaviourally equivalent, if and only if
s and s’ (or the respective states to which they can unobservably transit) represent the
same acceptance status for liveness properties that have been introduced in the subtree
rooted at Sys. Thus, in our checking mechanism described in the following section, an
LTS violates a liveness property iff its minimised equivalent does.



5.2 Checking Properties and Locating Violations

In our Extended Compositional Reachability Analysis (ECRA) technique, every
property automaton B is mapped to an LTS B’ as described in Definition A. Each B’ is
included in the compositional hierarchy for composition with the (sub)system for which
it expresses some liveness property. CRA is then used to compute the global graph for
the system. In our case study for example, the liveness property LTS Liv_Rec3’ has
been included in the subtree of REC_3 (see Figure 9). REC_3 thus becomes:

(Channel3 || Watch3 || Receiver3 || Liv_Rec3’) ↑ {failA, advA/S, acc3}.

In ECRA, a process P satisfies the liveness property expressed as a property
automaton B if and only if all cycles in P||B’ contain a transition labelled by the
acceptance action of B’.2 For simplicity, the technique assumes fair selection and fair
process execution in the modelled systems3. For example in a communicating channel,
the assumption ignores unfair execution sequences that keep losing messages. It also
ignores those situations where a ready process never fires. Under the stated assumption,
satisfaction of property B can be reduced to checking the existence of acceptance
transitions at terminal sets of states of P||B’. A set of states C in an LTS < S, A, ∆, p > is
said to be terminal if and only if:

• C is a strongly connected component; and
• C is closed under ∆, i.e., ∀  s ∈  C, (s, a, s’) ∈  ∆ ⇒  s’ ∈  C.

The computation of terminal sets of states in a graph can be performed with
complexity linear to the size of a graph [2]. ECRA also keeps track of all acceptance
actions that have been introduced in the analysis. Let a be an acceptance action
introduced to identify the acceptance states of a property automaton B. Our method
concludes that the property B is not satisfied by a system S if S||B' contains terminal sets
of states where a cannot be executed. Since the action a uniquely identifies a property
automaton, ECRA specifically indicates which properties cannot be satisfied by the
system under analysis.

When analysis uncovers property violations, a useful kind of diagnostic
information to provide to the user is a detailed path leading to the violation. In a
compositional technique where actions have been hidden at intermediate phases of
analysis, abstracted information can be recovered by using hierarchical tracing [27].
When no violation is detected, ECRA removes acceptance transitions from the global
state-graph and then minimises it. The minimisation results in an LTS observationally
equivalent to the one that would have been obtained if the liveness properties had not
been included in the analysis.

                                                          
2 This is a mechanism adapted from that described by Gribomont et al [14] and Fernandez et al [10].
3 Our analysis technique additionally includes a liveness checking mechanism that does not assume

fairness, i.e. for cases where the fairness assumption is too restrictive. Assuming fairness is thus
provided as an option in our analysis tools. It is beyond the scope of this paper to describe the latter
mechanism.



5.3 Checking the RMTP Protocol

The RMTP protocol as described in section 3 has been used for comparing our method
with both traditional Reachability Analysis (RA) and CRA. In the case study, we have
assumed that the user wishes to globally expose actions failA, A.selS, recoverA and
fatalA, and therefore observe only part of the behaviour of component DR_A in the
system. All remaining actions have been hidden as soon as they were made internal to
subsystems.

↑{failA,   advA/S, acc3}

↑  all -  {mesS, lose}

A_ChnlDes_RecA

↑{recoverB, failB,  advB, advA/B/S}

Watch3Channel3Receiver3Liv_Rec3’Receiver Channel Watch

 LOC_REG2

SENDER

DR_A

REC_3

↑  all - {advA}

 DR_B

LOC_REG1

Liv_LocReg1’

Des_RecB B_Chnl B_Watch

REC_1

↑ {failA/B, selB, advA/B/S} 

↑{advA/S,  failA, acc1}

AP_SELECT

↑ all - {advS}

INTERM

Fig. 9. The compositional hierarchy for the RMTP

The ECRA technique has been applied to the compositional hierarchy that mirrors
the RMTP multicast tree of Figure 2, where LTS Liv_LocReg1’ and Liv_Rec3’ have
been introduced as described in section 5.2 (see Figure 9). The global graph thus
constructed for AP_SELECT contains 344 states and 2,626 transitions. Property
Liv_Rec3’ is satisfied. However, the graph contains terminal sets of states where acc1
cannot be executed. As such, ECRA has identified that the system modelled by our
specifications violates Liv_LocReg1, and has returned a trace in the global graph, that
leads to a terminal set of states in which acc1 cannot be performed.

This trace together with the intermediate subsystems obtained have been used for
building up the debugging trace «selB, failB, advA, τ, τ, failA, recoverB, advB, τ » on
the graph of subsystem LOC_REG1 before minimisation. This trace leads LOC_REG1
to a non-acceptance state that forms a terminal singleton of states where the only
actions that can be performed are advA/B/S. Mapping this trace to REC_1 we obtained
trace «selB, failB, ms_fail, advA, mesA, selA, failA, advB, mesB» which drives
components (Receiver, Channel, Watch) to state (0, 0, 3). In this state of REC_1, both
the Receiver and the Watch components are deadlocked, and REC_1 can only perform
non-progress cycles where the Channel keeps receiving and losing advertisements. At



this stage, it was relatively easy to track down the problem to an omission in the
specification of component Watch. When component Watch is in state 3, it is ready to
inform the Receiver about the failure of its AP, but is not ready to record a new AP
selection by the Receiver. However, the trace obtained illustrates that the Receiver may
be at the stage of selecting DR_B due to its proximity in the multicast tree, in which
case it is no longer interested in failures of its current AP.

After the addition of transition (3, selB, 1) to process Watch (Figure 4), we
performed ECRA on the corrected version of the RMTP, obtaining the global graph
shown in Figure 10. Having used a compositional approach, we re-computed only those
subsystems affected by the change in the specifications. No violation of liveness
properties was detected this time. Acceptance transitions may therefore be removed
from the global graph, resulting in an LTS that reflects the behaviour of component
DR_A in the multicast tree. This LTS may be used to check further behavioural
properties, such as the one which asserts that whenever DR_A recovers from failure, it
can always select an AP.

A.selS

failA
fatalA

recoverA
failA

 acc1/3

AP_Select

0

acc1/3

1

acc1/3

2

acc1/3

3

Fig. 10. Global LTS of RMTP obtained by ECRA

5.4 When Fairness Affects Analysis Results

In our case study of the RMTP we have checked if liveness properties
Liv_LocReg1 and Liv_Rec3 are satisfied by the protocol. The automaton for
Liv_LocReg1 illustrated in Figure 6 will accept any infinite word w that belongs to
language (recoverB* (selB∪ failB))ω. However we have observed that under the
fairness assumption, property Liv_LocReg1 is trivially satisfied.

Let T be a terminal set of states that violates Liv_LocReg1. It is impossible for a
recoverB transition to be enabled at any state s of T, as in this case acc1 will also be
enabled at s which contradicts our violation assumption. Since no acceptance transition
for Liv_LocReg1 occurs in T, any trace leading to the root of T must contain recoverB
but not  failB or selB. However failB is always a possibility in the behaviour of DR_B
after recovery from failure, and therefore (s, failB, s’) will be possible for some s ∈  T.
As T is a terminal set of states s’ ∈  T, and acc1 is enabled at s’ which again contradicts
our assumption.



It is clear that the existence of the failB transition in Liv_LocReg1 makes the
satisfaction of the property trivial under the fairness assumption. In order to avoid the
problem, property Liv_LocReg1 was modified to accept language (recoverB* selB)ω,
and fatalB was removed from the behaviour of DR_B. We conducted our experiments
after performing these alterations, and the results confirmed the fact that the protocol
does not violate property Liv_LocReg1.

6 Experimental Results

We have analysed the RMTP case study using ECRA, CRA and RA for both the cases
of incorrect and correct specifications. We have compared the three techniques in terms
of the size of the graphs that they have generated. The experiments were conducted
using TRACTA - an environment for analysing behaviour of distributed systems [12].
The results are summarised in Tables 1 and 2.

Incorrect ECRA CRA Traditional RA

Specification #states #trans. #states #trans. #states #trans.

Largest subsystem 90 370 91 305 not applicable

Global system 344 2,626 1,291 7,586 96,528 664,416

Table 1: Results for Incorrect Specifications of RMTP

Specification ECRA CRA Traditional RA

After Correction #states #trans. #states #trans. #states #trans.

Largest subsystem 90 370 91 305 not applicable

Global system 4 13 1,371 8,035 96,528 672,588

Table 2: Results for Specifications of RMTP After Correction

The size of the graph generated by traditional RA shows that even the part of the
RMTP protocol presented is nontrivial to analyse. The results were obtained by
excluding from the analysis components REC_2 and REC_4 which exhibit behaviour
identical to that of components REC_1 and REC_3, respectively. In the experiments,
CRA was found to be more efficient than traditional RA, even with the global
exposition of actions involved in the liveness properties of interest. The largest graph
generated by CRA is smaller than that by traditional RA by 70 times. This justifies the
use of CRA for this verification. However, the advantages that CRA exhibits as
compared with traditional RA gradually disappear as the number of actions that need to
be globally observable increases.

ECRA, on the other hand, performs better in both cases. In the case where the
specification is correct, it reduces the global graph generated by CRA by 300 times, and



the one generated by RA by 24,000 times. Moreover, it returns a graph that exposes
concisely the system behaviour of interest to the developer. We have to mention here
that, in ECRA, although the largest intermediate subsystem in the correct case has the
same size as the one in the incorrect case, the size for most of the intermediate
subsystems was reduced in the former case.

We have made the following observation in our experiments with ECRA and CRA
techniques. Consider subtrees of the compositional hierarchy containing liveness LTSs
that involve actions in some set Actions. In most cases, for all subsystems in which all
members of Actions have been exposed by CRA, ECRA performs better or, in the worst
case, equally to CRA. An informal explanation for this is that ECRA is a technique that
achieves selective minimisation when liveness properties are included in the analysis. It
inhibits, in the minimisation process, the merging of states that could result in hiding
violations in the global graph for the system. It is therefore not expected to increase the
size of a graph where observable actions can be used to detect the violation. In the
absence of violations, it allows minimisation to proceed to its full effects, as has been
shown in Table 2.

7 Conclusion and Future Work

In this paper, we have extended compositional reachability analysis with a mechanism
for verifying multiple liveness properties that may involve globally unobservable
actions. The mechanism does not require modification of the well-known formalism of
LTS, and can be readily integrated in the existing framework of CRA. The integration
preserves the existing composition and minimisation procedures of CRA. This has been
achieved by avoiding special treatment of acceptance states. Acceptance states are
identified with transitions labelled by actions globally unique to the system under
analysis. A further advantage is that the approach is complementary to our approach for
checking safety properties [7]. Safety properties are specified as property automata
which can be composed directly with those specifying liveness properties under the
CRA framework. As mentioned, to the best of our knowledge, no similar work provides
the possibility of simultaneously checking multiple properties in the framework of
CRA. This is particularly so in the presence of action hiding. Solutions that have been
proposed compromise one or more desirable features of CRA.

A case study of a reliable multicast transport protocol of over 96,000 states and
660,000 transitions has been used to illustrate our technique and compare it to
alternative ways of verifying liveness properties. Promising results have been obtained.
The mechanism preserves key desirable features of CRA while enhancing its
verification capabilities.

Our experience with the case study has shown that fairness is a very important issue
when analysing a system with respect to liveness properties. Assuming strong fairness
in our models may result in an insufficient search for property violations. On the other
hand, making no fairness assumptions may yield an unnecessarily large number of
violations that are of no real interest. We are currently researching into the possibility
of achieving a practical solution to this problem.



Further work is needed for providing guidance concerning which actions should be
hidden, and where properties should be included, in the compositional hierarchy. This
is both a logical decision as to which is the most sensible, and an efficiency decision as
to which aids the minimisation automation. Our current work involves further
optimisations to the proposed liveness checking mechanism as well as the possibility of
adding contextual constraints to it [8]. We are also investigating a method which, after
recording the violation on subsystem states, prunes from those subsystems all
transitions originating from those states. Finally, we are evaluating the benefits and
limitations obtained from automatically generating Büchi automata based on
specifications in the linear time temporal logic LTL [14].
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